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The Gibbs neg-entropy ~ = S II In II  is compared to the Shannon neg- 
entropy ~/s = ~ P lnp. The coarse-grained density is II, while {p} is a prob- 
ability sequence. Both objects are defined over partitions of the energy shell 
within a set-theoretic framework. The dissimilarity of these functionals is 
exhibited through ~G vs. ~s curves. A positive information interpretation of 
~Ta is given referring it to the maximum information contained in the 
solution to the Liouville equation. The physical relevance of ~/G over ~/s in 
classical physics is argued. In quantum mechanics, the fine-grained Shan- 
non entropy remains relevant to the uncertainty principle, while the coarse- 
grained densities maintain their properties as in the classical case. 

KEY WORDS: Coarse-grained density; density operator; energy shell; 
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1. I N T R O D U C T I O N  

Although  the in fo rmat ion  approach to statistical mechanics (1) is current ly  

popular ,  for the most  par t  authors  fail to dis t inguish sufficiently between the 

S h a n n o n  and  Gibbs  entropies. In  this paper,  differences between these en- 

tropies are exposed and  it is concluded that :  (a) The in fo rmat ion  properties 
relat ing to these two entropies are quite dissimilar;  (b) the Gibbs  ent ropy is 

more relevant to physics. 
In  classical physics, the solut ion to the Liouvil le equa t ion  D is maximal ly  

informative,  g It  conta ins  everything there is to know abou t  the system to 
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which it pertains. If  A is any dynamical variable, then the average of  A at the 
time t is 

(.4) = f~ D(t)A dE 

with D normalized to unity. The integral extends over the set E of phase 
points which comprise the energy shell in which D is defined. If  this energy 
shell is partitioned, one can construct a coarse-grained distribution II 
(after Gibbs (a)) whose value in a cell of the partition is the average of  D in 
that cell. The better II approximates D, the more information it contains. 
A measure of  this information is given by the Gibbs neg-entropy ~a, 

= -Se/~c = fE I I  In II dE = ~ II~E~ In II~ (1) ~TG 

where K is Boltzmann's constant and S denotes entropy. The integral ex- 
tends over the set E of phase points which comprise the energy shell. The 
measure (volume) of the ith cell is E~. The larger is 7/a, the more informative 
is II. 

An alternate means of qualifying the information properties of II is as 
follows. If  D is normalized to unity, then 

p~ = 11~E~ (2) 

is the probability of finding the system in a state in the ith cell. The volume 
of this cell (as noted above) is E~. Given a sequence of probabilities {p~}, 
with what certainly can one say what state the system is in at a given time ? 
A measure of the related uncertainty is given by the Shannon entropy, (4) 

Ss = - K ~ p~ In p~ (3) 

If  {p~} is a uniform sequence, then this uncertainty is maximum. If, on the 
other hand, say, p~ = 3~1, then this uncertainty is minimum (zero). For this 
latter case one is certain that measurement finds the system in a state in the 
first cell. 

The Shannon entropy finds important application in communications 
engineering? In addition to the above interpretation, within communications 
engineering one also relates the Shannon entropy to the average number of 
bits per symbol used in encoding messages. Within this scheme, p~ is the 
probability of the ith element of an alphabet. It is the frequency with which 
the ith element of the alphabet occurs in a random sampling of messages. In 
the extreme that, say, the first letter of the alphabet predominates in all 
messages (p~ = 3~1), messages carry minimal information and Ss -- 0. In the 

3 For application of the Shannon entropy to communications engineering see Ref. 5. 
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opposite extreme that all n letters of  the alphabet occur equally often, p, = 
1/n and messages contain maximum information; Ss = K in n. 

Of  the two interpretations of  Ss relevant to communications engineering 
outlined above, the information-entropy association predominant in physics 
is the former. Namely, the Shannon neg-entropy, - S s ,  is a measure of  the 
certainty regarding the state of a system, given the sequence {p~}. 

In the analysis to follow, we investigate the differences between the 
neg-entropies ~a and */s (~s = -Ss /K)  �9 They are examined as functionals of  
the microdistribution D and the partition on which II and p are defined. 
(Here we are denoting {p~} by p. We have already used II to denote {II,}.) 
The Gibbs neg-entropy varies f rom zero (least informative about the structure 
of  D) to ~TD, where ~D is the fine grained Gibbs neg-entropy, 

= f D In D dE (4) ~TD 

The functional ~a assumes this maximum value on the infinitely refined 
partition (denoted by M* below). On this partition IF[ = D, and is 
maximally informative. 

The Shannon neg-entropy ranges from -oo ,  where the aggregate of p~ 
values is such that one is maximally uncertain (or minimally certain) about  
the outcome of an experiment on the state of  the system, to zero, where this 
uncertainty is minimum. 

Both ~G and ~Ts are zero for the unit partition. This is the partition con- 
sisting of a single cell, i.e., the whole energy shell. These functionals both 
assume their maximum magnitudes on the infinitely refined partition M*. 
The fact that ~s ~ - o e  in this limit is of  small physical relevance. The same 
is true of  the zero value of ~Ts on the unit partition (one is certain that the 
system is in a state on the energy shell). On the other hand, the fact that ~a 
is minimum on the unit partition reveals that II is least informative on this 
partition, while the maximum value which ~TQ assumes on M* indicates that 
1I is maximally informative on this partition. Given this latter value of II 
(i.e., D) one is most knowledgeable about  the properties of  the system to 
which II pertains. 

Both ~s and ~G change monotonically with successive refinement of  
partition. However, for a given fine-grained distribution D, ~a is not a single- 
valued function of ~Ts. The partition on which II and p are defined enters as 
a parameter in a plot of  ~/~ vs. ~Ts. One obtains a single ~s vs. ~Ta curve for a 
unique sequence of refinements of  increasing order (of the unit partition). 
These curves are bounded between the axes: (a) D = 3(z - z0). For  this 
value of D, ~a varies f rom 0 to +oo along the line ~s = 0. (b) D = 1. For  
this case ~s varies from 0 to - o o  along the line ~TQ = 0. (The phase coordinate 
of  the system is z.) 
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Similar constructions exist in quantum mechanics, where the formalism 
is centered about the maximally informative density operator t~, whose di- 
agonal elements are probabilities. The coarse-grained entropies maintain 
their classical properties with respect to partitions of the spectrum of energy 
eigenvalues. Properties of the fine-grained Shannon entropy are discussed 
which are relevant to the uncertainty principle. 

2. A N A L Y S I S :  THE CLASSICAL  CASE 

2.1. Def in i t ions  

Consider the set of points E 

E = { z l S  < H(z) < S + •S} (5) 

where the spread in energy AS is vanishingly small compared to S. The 
Hamiltonian of the system is H. For a system with N degrees of  freedom, 
z is a 2N-dimensional vector in Cartesian F space (~2N). In this space, the 
set E is called the energy shell. Any simply connected subset E~ of E has a 
well-defined Euclidean diameter d~ in F' space. The measure of  the set 
E~ ~< E is the normalized volume (Lebesgue) integral 4 

E,~ = (1/~) 1" dE; ~ = [ dE (6) 
~ ] E  

The dimensions of ~ are those of an element of  volume in F space, while the 
measure E= is dimensionless. In these "uni ts ,"  the volume of the energy 
shell is unity (E = 1). 

A partition M of  E is the collection of (simply connected) sets 

M = ( E ~ I U  E~U = E; E~M C~ EkU = ~,  E~M > O} (7) 

The order of  the partition M is the number of sets in M and is written Vu. 
A partition M is finite if VM is greater than one. The empty set is ~ .  

If D(z) is the density of  ensemble points in E (D /> 0), then the coarse- 
grained density II is a function of M and z and is defined by 

H ( z , M ) = E ~ [  DdE, z e E ~ e M ;  I I = I I ~  for z e E ~  (8) 
�9 / E  n 

If  

fE D dE = 1 (9) 

4 One can also work with the energy-surface, E = {zig = H(z)} with the measure 
~E dz/lVHl = E. Both measures are preserved under the dynamical motion of the 
system. The integral (6) is a Poincar6 invariant. 
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then D dE is the probability of finding the system in the state z E dE and D 
may be termed a probability density. (This property of D is assumed in the 
remainder of the analysis.) For  D a probability density, 

= E . H .  = ~  D d E  ~< 1 (10) P~ 
~ E  r~ 

is the probability of finding the system in a state in E. .  The sequence {p.} 
satisfies the probability norm, 

~ p ~  = ~ EnH~ = f~ D dE = 1 (11) 

Next we turn to the definition of the refinement of the partition M. If  
all the elements of the partition M are unions of the elements of the partition 
N, i.e., 

EnM = 0 EiN,  VEnM ~ M (12) 
i = 1  

then N is a refinement of M and is denoted by 

N m M  

All partitions are refinements of the unit partition which consists of the 
whole set E. The unit partition is denoted by L 

If  D is constant over the sets of a partition M, it is a simple set function, 
and has the representation 

D = ~ D.X~.(z) (13) 
E n  

where XE, is the characteristic set function, and the D~ are constants. If  D is 
simple on a finite partition M, it is clear that 

D(z) = II(z; M) (14) 

When D is simple on M, then any refinement of Mi s  said to be equivalent to 
M with respect to D. 

The su-partition M* is defined as 

M* = lim M, VM*= ~ (15) 
d M ~ O  

Y M " *  oo 

In this expression dM is the maximum diameter of all sets in M and VM is the 
order of M (defined above). 

A sequence of partitions {Mi} such that 

Ml c M2 c M3... 

is called a nested sequence. 
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2.2. Entropies 

With these definitions established we now turn to comparison of the 
two entropy functions briefly mentioned in the introduction. To repeat, the 
Gibbs coarse-grained neg-entropy is the functional 

~M 

~a(H, M)  = ~" II,E~ In II~ (16) 
~ = i  

It  is dependent on the distribution II as well as the partition M. The Shannon 
neg-entropy is 

VM 

~s(P, M)  = ~ p~ lnp~ (17) 

Using (2), one obtains 

~Ta = ~ls + ~ p ,  lnE,  -~ = ~/s + A (18) 

Since E~ ~< I, the increment A is positive. Microdistributions are easily 
constructed for which one can construct distinct measure sequences {E~}, 
while maintaining the sequence {p~}. In such cases there are many values of  
A corresponding to a single value of ~Ts, so that in general, 7/s is not a single- 
valued function of ~Ta- 

I f  the partition M is finite, then 

- I n  vM ~< ~s ~< 0 (19) 

For  the su-partition M*,  In vM, = +oo, and 

- ~  ~< ~Ts ~< 0 (20) 

The right equality is assumed only ifp~ = 1 for any i. In this case one associ- 
ates a minimum uncertainty with the sequence {p~}. This value is always 
assumed on the unit partition L 

The bounds on ~/a appear as 

0 ~<% ~<~/D (21) 

The right equality is assumed only: (a) on any refinement of  M provided 
D is simple on M; (b) on the partition M *  (since II = D on M*). The left 
equality is assumed only : (a) on the partition I ;  (b) on the partition M pro- 
vided H is uniform on M. I f  H is uniform on M, then 17 = 1, due to the 
fact that ~ II~E~ = H ~ E~ = H = 1. This latter condition together with 
(a) above lead to the Gibbs-Ehrenfest  theorem/a,6) The significance often 
ascribed to this theorem is as follows. Suppose initially at t = 0, D is simple 
on M. Then D = II on M. Under the natural displacement of the system 
in time, if D changes, ~/G does not increase with respect to the partition M, 

~ ( t )  ,< ~ ( 0 )  
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For  this statement to be of  any physical relevance, one must show that E is 
metrically indecomposable. (2'7) This in turn guarantees that D distorts. 

Next we consider the dependence of ~s and ~a on refinement of  partition. 
For  a given fine-grained density D, under a refinement of partition, ~s 
decreases (one is less certain about the outcome of an experiment on the 
state of  the system) and ~?G increases (II better approximates D, whence it is 
a more informative object). That is, if N is a refinement of M, 

then 

and 

N ~ M  

�9 /s(N) ~< ~/s(M) (22) 

>t (23) 

Thus ms and % vary monotonically with increasing order of refinement of a 
given partition. The proof  of the first statement is quite well known, and pro- 
ceeds as follows. Let N = M except on the first cell of M. This cell is divided 
into two cells so that the p values on E1 become pl '  and p2' on E~' and E2', 
respectively, where Ez = El '  u E2' and p~ = pl '  + P2'. In this case we can 
write 

~/s(N) = ~s(M) + p~' ln(p~'/pl) + P2' ln(p2'/p~) <<. ~s(M) (24) 

which is clearly the case since the arguments of  both log functions are less 
than one. The equality holds only ifp~' or P2' is zero. 

Unders similar conditions, to establish (23), we write 

�9 /a(N) = ~/G(M) + p ( l n ( n z ' / n x )  + p~' ln(n~'/IIO 

- ~Q(M) + p~ In A 1> ~a(M) (25) 

where we have labeled 

w ~~ (1 + x) w+~ P21 E2' 
A-- - (1  + w) w+l xW , W-pl--~ > 0, X=El,-- ~> 0 

Thus to establish (23) we must show that A /> 1, or equivalently that 

(1 + x)~+~/x ~ >1 (1 + w)W+~/w ~ (26) 

To demonstrate the validity of this inequality, we consider the function 

f ( x )  = (1 + x)W+l/x ~ 

For  (26) to be true, f ( x )  must be minimum at x = w, which is shown by 
forming the first two derivatives o f f :  

i f ( x )  = [ f (x ) /x (x  + 1)](x - w) 
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It follows that f '  = O o n l y a t x =  w. 

f"(x)  = [w(w + 1)/x2(x + 1)2If(x) 
A t x = w  

We conclude that 
f"(w) = f(w)/w(w + 1) 

f ( x )  > f(w), x # w (1-i 1' # 179.') 

and f (w)  is the only minimum of f (x ) ,  whence (26) is true and (23) is estab- 
lished. The equality in (25) holds only if  I I l ' =  I/2', that is, if  II maintains its 
uniform structure in E (  under refinement of  M. Thus we recapture the 
Gibbs-Ehrenfest  theorem that ~TG is minimum for the uniform coarse- 
grained distribution. 5 

With these properties established we next turn to constructing sketches 
of  Vs vs. Va curves for given microdistributions D and nested partition 
sequences of  the unit partition. The first two cases serve to determine the 
%-~s axes. 

Case (a). For  this case 
D = 8(z - z0) (27) 

For  all partitions M such that z0 ~ E~ c M for some x, one obtains thatp~ = 1, 
p~, = 0, K' # K. For  such a sequence of  p values ~/s = 0. It  is maximally 
certain that measurement finds the state of  the system in the ,~th cell of  the 
partition. However, since ~78 is insensitive to volume of partition cells it does 
not detect that with successive refinement of  partition, the xth cell shrinks 
about  the state which the system is in. 

For  this same sequence of  partitions % is initially zero on the unit 
partition, where the value II = 1 is least related to D. On the final partition 
M*,  % is infinite and I1 = D is maximally informative. A sketch of these 
values is shown in Fig. 1. 

Case (b). For  this case 
D = 1 (28) 

It  is uniformly probable to find the system in any state in the energy shell. 
Since D is simple on all partitions, D = II on all partitions and ~TG = ~D = 0. 
The coarse-grained density is equally informative on all partitions. The 
Shannon entropy, on the other hand, has the value ~s = 0 on the unit 
partition and decreases uniformly with increasing refinement of  the unit 
partition until the value ~s = - m  is attained on M*. At each level of  parti- 
tion refinement, the Shannon entropy sees the corresponding sequence of 

s A more d~rect proof  of (25) follows from the Gibbs-Ehrenfes t  theorem (H. Grad,  
private communication).  However, the proof  in the text maintains a parallel structure 
with the proof  of (24) and keeps the paper somewhat self-contained. 
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Fig. 1. ~s  vs. ~/a cu rves  fo r  case  (a) :  D = 8(z -- Zo). 

uniform probabilities as carrying a maximum uncertainty which grows 
logarithmically in magnitude with increasing partition order. A sketch of 
these values is shown in Fig. 2. 

Case (c). For this case, D is simple on the finite partition M. To exhibit 
the difference between the two said entropies for this case, we construct a 
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nested sequence of  partitions whose first element is the unit partition and 
which includes the partition M. On M, 17 = D and ~Q assumes its maximum 
value 79. It  maintains this value on all successive refinements of  M. This 
property reflects the fact that II is equally informative on all refinements of  M. 

On the other hand, the Shannon entropy is relatively insensitive to the 
fact that D is simple on M. It  decreases monotonically with increasing 
partition order. A sketch of these values is depicted in Fig. 3. 

C a s e  (d) .  This case is offered to illustrate a more peculiar behavior of  
the ~s vs. ~7~ curve. I t  and the case to follow are significant in that they 
exhibit a D value for which ~/a = 0 is not uniquely attached to ~)s = 0. Let 
M be a partition of  E which contains cells of  equal measure, 

E M =  1Iv M 

where the order v M is even. On one-half of  these cells D has the value 

D = 1 / (VM/2)E  M = 2 (1) = 2/VM) (29) 

and on the other half 

D = O  (,p = 0) 

so that D maintains its normalization. These D values form a symmetric 
array on E so that the environment about any cell in which D > 0 is the 
same. Under such conditions a nested sequence of  partitions exists such that 

0 
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I 

Fig.  3. r/s vs. ~G curves  for  case (c): D s imple  on  M.  
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The Shannon entropy again merely decreases monotonically with 
increasing partition order. The corresponding sequence of ~/s vs. ~TG values is 
sketched in Fig. 4. 

Case (e). This is the opposite case to the one just cited. The micro- 
distribution is nonzero on a simply connected subset E1 of E and zero on the 
complement of El ,  so that 

D = 1~El for zEE1 
(30) 

D = 0 elsewhere 

For  all partitions Mtha t  include an element E M such that E~ c E M (E~ < EM), 

the Shannon entropy vanishes, while 

�9 / a =  - l n E  M > 0 

For partitions that include E~ as an element, ~70 assumes its maximum value, 

~7~ = n D  = - I n  E1 

Thus for a sequence of nested partitions {M} with the above cited property 
and such that in successive refinements 

E M -+ E1 

~Ts = 0 until E u = E~, when it begins to decrease with increasing partition 
order. The Gibbs entropy increases until E M = E~, at which point it assumes 
its maximum value ~/D. These properties are sketched in Fig. 5. 

The superposition of these ~Ts vs. % curves is shown in Fig. 6. 
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Fig. 6. ~s vs. ~G for  the following cases: 1. 
D = B(z -- Zo). 2. D = 1.3. D is simple on 
AT/. 4. D is uni form on half  of  E (see Fig. 4). 
5. D :~ 0 on  one cell of  M. 6. The general 
case. 
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3. Q U A N T U M  M E C H A N I C S  

Quantum statistical mechanics 6 involves the density operator t~. This 
operator is relevant to a system which at a given instant of  time is in one of  a 
possible number of  states. I f  the probability that the system is in the kth 
state is p~ and lk) is the normalized eigenket of  this state, then the density 
operator for this system is 

= ~ ]k >p~ < k[ (31) 
k 

This operator is diagonal in the /~  representation, with eigenvalues Pk. The 
expectation of  an observable A of this system is 

<A) = Tr t~ .~, Tr fi = l (32) 

At this fine-grained level, maximum information about the system is con- 
tained in the density operator ft. For  situations where states are so closely 
spaced that it is difficult to differentiate between neighboring states, it proves 
convenient to introduce a coarse-grained density operator (after Pauli(l~ 
Let the discrete set which is the spectrum of  energy eigenvalues for such a 
system be denoted by E. This set is partitioned into subsets (cells) E~ such that 
E = [..J E~ and E~ (3 E~ = ~. The "vo lume"  of the set E~ is the counting 
measure, i.e., the number of elements in E~. Over this partition, the coarse- 
grained density operator has diagonal elements 

k e l E  l 

The probability of finding the system in the ith cell is 

P~ = H~E~ 

The Shannon and Gibbs neg-entropies appear as 

vs = ~ P, In P,; w = ~ E~(n, In II,) (33) 

The distinctions between these functionals remain as in the classical case 
considered above. The Gibbs neg-entropy increases with refinement of 
partition, rendering II a more informative distribution. 

However, the neg-entropy popular in quantum mechanics is neither of  
the above functionals but rather that introduced by Pauli (and discussed at 
length by Tolman(Xl)). It appears as 

~7t, = ~ II~ In II~ (34) 

6 Good reviews of quantum statistics can be found in Refs. 8 and 9. 
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This functional as well as ~s decreases with refinement of partition (II = p 
on M if p is simple on M). The analog of the Gibbs-Ehrenfest theorem in 
quantum mechanics is referred to as Klein's theorem. (12),7 With p simple on 
M at t = 0, i f p  changes, ~e does not increase 

~p(t) ~ rh,(0) 

This property is shared by the Gibbs neg-entropy. 
Another entropy encountered in quantum mechanics (11) is the Shannon 

neg-entropy relevant to the fine-grained distribution {Pk}, 

qs = ~ P~ In p~ = Tr  fi In t3 

(with ~ diagonal in the /~  representation). This functional finds useful inter- 
pretation with respect to the uncertainty principle. If a system is initially in 
a pure state of the observable/~, then 

= Ik><kl ,  Tr ~ In ~ = 0 

and ~s is maximized. One is most certain regarding the outcome of measure- 
ment of the observable/~. If  measurement is then performed on the observable 
r where [r  # O, then subsequent to this measurement, ~s (in the /~ 
representation) decreases. On the other hand, if r is compatible with /~, 
then subsequent to the measurement of r ~s is left unchanged (in ei ther/~ 
or r representation, and counting degenerate states only once). 

Similarly one finds that if the system is in a mixed state with respect to 
the degenerate observable/~, then ~s decreases under a degeneracy-removing 
perturbation (the perturbation effects a refinement of the partition on which 
the distribution {p~} is defined), providing the perturbation leaves the system 
in a mixed state with nondegenerate p~ values maintained. 

4. C O N C L U S I O N  

Investigation of the properties of the Gibbs and Shannon entropies 
shows them to be dissimilar in mathematical properties as well as physical 
relevance. The Shannon entropy is consistently a measure of the uncertainty 
related to an experiment on the state of a system. This uncertainty increases 
with increasing refinement of partition. This is so even for the case where the 
microdistribution is uniform over the whole energy shell, in spite of the fact 
that coarse-grained distributions over all partitions are equally informative 
for this case. The Gibbs neg-entropy, on the other hand, is consistently a 
measure of the information contained in the coarse-grained II distribution. 
This is illustrated by way of  calculating these entropies as function of  
succesive refinement of partition for various representative D functions. 

7 For a more inclusive analysis of the properties of the density matrix which includes the 
coupling of the state of the system to that of the measuring apparatus see Ref. 13. 
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Properties o f  the fine-grained Shannon  neg-entropy ~/s are shown to be 
relevant to the uncertainty principle. Examples o f  successive measurements  o f  
commut ing  and nonc om m ut i ng  observables, respectively, show this ent ropy 
to be a consistent measure o f  the uncertainty p roduced  by such measurement.  
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